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The method of energy is used to study the stability of uniformly accelerated 
flows, i.e. those flows characterized by an impulsive change in boundary tempera- 
ture or velocity. Two stability criteria are considered: strong stability, in which 
there is exponential decay of the disturbance energy, and marginal stability, in 
which the disturbance energy is less than or equal to its initial value. For the 
important case in which the critical stability parameter (measured by the Maran- 
goni, Rayleigh or Reynolds number) decreases with time, it is proved that an 
onset time exists. Furthermore, it is shown that the experimental onset time is 
bounded below by the marginal stability limit, which in turn is bounded below 
by the strong stability limit. 

The method is then applied to the problem of an impulsively cooled liquid 
layer susceptible to instabilities driven by interfacial-tension gradients. The 
strong stability and marginal stability boundaries are calculated and bounds on 
the onset time are given. These results represent the first rigorous bounds for con- 
vective instability problems of this class. Comparison with the limited available 
experimental data shows the calculated results to be lower bounds on 
the experimental onset times, and hence the theory is in agreement with 
available experimental results. 

1. Introduction 
The energy stability method has been recently applied to a number of time- 

dependent flows, notably by von Kerczek & Davis (1972), Davis & van Kerczek 
(1973) and Homsy (1973, 1974). In  the case of modulated base states, the im- 
portant reformulation of the energy method by Davis & von Kerczek (1973) 
allowed the definition of two criteria for ‘stability ’. In  Homsy (1  974, hereafter 
referred to as 11), these were referred to as strong global stability and asymptotic 
stability. The former definition is due to Joseph (1971) and implies an exponential 
decrease of a generalized ‘energy’ functional with time for t E [0, co). The latter 
is a weaker concept of stability and simply implies a net decrease of the energy 
functional over one cycle of modulation. This criterion implies asymptotic 
stability in the mean, but does not exclude a large disturbance which may grow 
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(in a suitable norm) over a portion of a cycle and indeed, which may be extra- 
ordinarily persistent in time. Detailed calculations are available for the oscillatory 
Stokes layer, in Davis & von Kerczek (1973), and fluid layers subject to gravity 
or surface-temperature modulations, in 11. 

In Homsy (1973, hereafter referred to as I), the method was applied to im- 
pulsively heated fluid layers. Below we shall refer to this class of problems as 
‘ uniformly accelerated flows ’, although we include impulsive heating and cooling 
and flows experiencing a sudden change in boundary velocity. The discussion in 
I dealt with the possible shapes of the stability boundaries in the Rayleigh- 
numberltime plane, which result in either lower bounds on the ‘onset time’, 
defined in detail below, or a lowering of the global stabiIity limit below its value 
for steady flows. Also in I, a full discussion was given of the inadequacies the 
results of both the quasi-static and the amplification linear theory for accelera- 
ting flows, Indeed, the results of Rosenblat & Herbert (1970) and those in I1 
demonstrate that the quasi-static approximation is valid only when the base 
state and disturbances have widely different time scales, i.e. a disturbance 
Strouhal number is small. There is no equivalent separation of scales in the case 
of uniformly accelerated flows in which both the base state and disturbances 
evolve on a diffusive time scale. It is thus apparent that no linear instability 
theory exists for accelerated flows of this class, and it is in this context that the 
method of energy finds great utility. 

In  this paper we return to a study of this class of flows. We show in $ 2  that, 
in addition to the discussion in I ,  the reformulation of the energy method allows 
the introduction of a weaker definition of ‘stability’ which requires only that the 
disturbance energy be less than its initial value. This definition was motivated, 
as was the introduction of a similar weak concept of stability in 11, by experi- 
mental evidence which supports its applicability in certain circumstances. 

This work was motivated by the applicability of the method of energy to 
instabilities driven by surface tension; we treat this problem in 5 3 in some detail 
following the general discussion. The relevant studies dealing with surface- 
driven instabilities of time-varying base states are Blair & Quinn (1969), Vidal 
(1967) and Vidal & Acrivos (1968). In  addition to their careful experimental 
work on buoyancy-driven instabilities, Blair & Quinn (1969) briefly considered 
horizontal liquid layers subject to flows driven by surface tension. A 10% 
solution of ethyl ether in monochlorobenzene, initially in equilibrium with its 
atmosphere, was exposed to a step change in pressure. This resulted in the de- 
sorption of the ethyl ether. Both schlieren photography and quantitative measure- 
ments of mass transport rates were used to determine the onset time. We define 
this quantity as the time between the impulsive change and the manifestation of a 
deviation from the stagnant, penetrative concentration (temperature) field. 
The concept of an onset time is thus intimately linked to the observed experi- 
mental fact that flows accelerated from a quiescent state require a finite time 
before disturbances, assumed initially small, grow to an amplitude sufficient to 
become detectable. It will emerge below, however, that in certain cases distur- 
bances of any initial norm decay exponentially in time with decay rates which are 
quantitatively predictable. Blair & Quinn have dramatically shown that the 
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onset time is unambiguously defined, as they found good agreement between 
onset times measured from deviations in transport rates and those determined 
using schlieren visualization of the instability. Unfortunately, owing to the 
unavailability of physical-property data for this system, we can make no direct 
comparison with the predictions developed below. 

Vidal & Acrivos (1968) have attempted a linear stability analysis of a time- 
developing penetrative temperature profile. In  their model, a t  zero time thermal 
energy is withdrawn a t  a constant rate from the free surface of an initially 
stagnant and isothermal fluid layer. The stability of the resulting time-varying 
base state with respect to instabilities driven by surface tension was investigated 
using the quasi-static approximation, which as we have noted above, is in- 
appropriate for problems of this class. The resulting predictions of critical 
Marangoni numbers were compared with experimental data on evaporating 
pools of acetone and methyl alcohol (Vidal 1967) and propyl alcohol (Vidal & 
Acrivos 1968). In the experimental work, the temperature profile a t  onset 
(onset being determined by schlieren photography) was used to calculate a critical 
Marangoni number. While the agreement between experiment and the quasi- 
static results is fair, it may be due to judicious reading of the experimental 
temperature profile, since the onset times themselves are in wide disagreement. 

The present work follows naturally from Davis & von Kerzcek and I. We 
seek to determine regions of stability in the Marangoni-number/time plane using 
the method of energy. The importance of the work is obvious owing to the absence 
of previous theoretical results on flow driven by surface tension. We note, too, 
that the model of a penetrative temperature profile considered here is often more 
representative of the true state of affairs than is the linear temperature profile 
treated by Pearson (1958) and refined by many others. 

The main result of this paper is that, for the first time, the energy method 
provides lower bounds on the onset time. We note that the results given for 
impulsive Couette flow by Conrad & Criminale (1965) are not true bounds since 
they were computed for a restricted class of disturbances. They do, however, 
suggest that the results developed in $ 2  below might be applicable to a wider 
class of accelerating flows. 

2. Formulation 
T h e  energy identities 

Let ti($, y ,  z ,  t ) ,  T(x ,  y ,  x ,  t )  be a dimensionless solution to the Boussinesq equa- 
tions appropriate to  an impulsive change in boundary velocity, temperature and/ 
or heat flux. We call this the base state. Following Joseph (1966), it can be shown 
that all dimensionless disturbances (u, 0) satisfy the energy equality (with 

dEldt = RIA(t)  -9. (2.1) 
q5 = 0(hR)i)  

Here E = +(]u12/a+$2) is a positive-definite ‘energy’ functional and the 
brackets refer to integration over a domain which is (i) finite in a t  least one 
dimension, (ii) finite in one dimension with periodicity in the remaining dimen- 
sions or (iii) finite in all dimensions. The remaining quantities in (2.1) are IA(t) ,  

13 F L M  68 
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an ‘energy production’ integral, 9, a positive-definite generalized dissipation, 
and R, a physical parameter of the flow. The following three cases are among 
the most common. 

(1) ImpulsiveJlow. R is the Reynolds number based on the maximum velocity 
and maximum finite dimension of the domain. 9 is the dissipation function 
(Vu: Vu) and I, is the symmetric ‘Reynolds stress’ 

I ( t )  = (u. D .u), 

where D is the rate-of-strain tensor of the base flow. In  cases when the distur- 
bances correspond to longitudinal rolls, specialized definitions of E and I,(t) 
are possible (Joseph & Hung 1971). 

(2) Impulsive heating. R is the square root of the Rayleigh number and 

I&) = A-~(w$)  - M(w$ aT/az), 
with 9 = (Vu:Vu+ p $ p ) + $ L p .  
Here w = k . u is the vertical component of velocity. 

in $ 3  below. R is the square root of the Marangoni number, and we have 
(3) Impulsive evaporation with variable surface tension. This case is deveIoped 

with 9 as in case 2. 

equations, regardless of their amplitude. We now develop our stability criteria. 
We emphasize that (2.1) is identically satisfied for all solutions to the dynamic 

Strong stability 
We briefly recapitulate and strengthen the results in I. Consider the maximum 
problem phl( t )  = max (I,/9). 

h 

(For a discussion of the space h, see I ,  Davis (1969), and $4.) 

dE/dt < 9{ - 1 + R/pA(t)}. (2.3) 
We then have 

We shall be primarily concerned in this paper with cases for which p,(t) is a 
monotone decreasing function of time. We state the main result as the following 
theorem. 

THEOREM 1.  Let pA(t) be monotone decreasing with at  most an integrable 
singularity at t = 0. Then for a given R ( > p, (00))  the flow is strongly stable for 
all times 0 < t < t“ ,  where t* satisfies 

p,(t*) = R. (2.4) 
Equation (2.4) is an implicit relation between the time interval (0, t)* during 

which the energy decreases and the physical flow parameter R. The proof of the 
theorem follows from standard manipulations. For all times such that R < p,(t), 
(2.3) may be bounded by dE/dt < t2E{ - 1 + R/pA(t)), (2.5) 
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whence 

for any time t < t“. Now since t < t“ andp, is monotone decreasing by hypothesis, 
we have 

which proves the theorem. An important interpretation of theorem I is the follow- 
ing corollary. 

( 2 . 6 )  E( t )  6 E(0) exp { - C2t(1 - R/p,(t”))), 

COROLLARY 1.  For a given flow parameter R, the onset time to, is bounded 
from below, viz. 

to, > t”. (3.7) 

Proof. By the mean-value theorem, 

E(t*) < E(0)exp(-t2t*(l -R/p,(f))), (2.8) 

where 0 < f < t*. Thus any disturbance at t* has suffered an attenuation which 
is bounded from above by exp ( -C2t*), where C2 ( =  t2(1 -R/p , ( f ) ) )  is bounded 
away from zero. Thus the onset time (in the sense described in $1)  must 
clearly be greater than t*. 

In  I, it was shown that the ‘optimal’ stability boundary is given by the solu- 
tion to the maximum problem 

P(t) = maxp,(t) (2.9) 
I>O 

and that this additional parametric time dependence of the optimal coupling 
constant does not invalidate the results. Thus the bound on the onset time is 
given as the solution of p”(t*) = R. 

Marginal stability 
In  this subsection we propose a new criterion for ‘stability’ of accelerated flows 
which is weaker than that developed above and which may have practical utility 
in a restricted sense. A number of carefully executed experiments have shown 
that, following an impulsive change in boundary conditions, an initially quiescent 
and isothermal fluid layer remains so for times approaching the onset time. Thus 
omnipresent small disturbances due to thermal and mechanical fluctuations 
are damped for a finite time interval, after which they presumably grow exponen- 
tially until becoming manifest. Thus, a suitable criterion might be expressed as 

E ( t )  6 E(0)  (2.10) 

if one has some a priori knowledge that E(0) is small. We refer to the criterion 
(2.10) as marginal stability. Note that this criterion differs from marginal condi- 
tions in linear stability theory, the latter being more, appropriately called mar- 
ginal instability. The development of the marginal stability criterion follows from 
the energy identity (2.1) and the work of Davis & von Kerczek. 

Consider the following maximum problem : 

v,(t) = max {(Rl,(t) - 9 ) / E } .  
h 

(2.11) 

13-2 
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FIGURE 1. The function vh( t ) .  The lower curve is for the case R < P(c0). 
The upper curve gives the probable behaviour for R > p(o3). 

The numbers v,, are parametrically functions of time. Coupling (2.11) with (3.1) 
we arrive at the energy inequality 

dE/dt < Y,,(t) E .  (2.12) 

Aswaspointed out inII, (2.12) serves as abound for energygrowth aswell as decay. 
For periodic base states, v,,(t) is also periodic and it is possible to integrate (2.12) 
over one cycle to arrive at  an alternative definition of stability, namely, asymp- 
totic stability. The same ideas apply to the present class of problems. 

Before developing the marginal stability criterion, we must establish a few 
preliminary results. The first of these, due to Davis & von Kerczek, is the fact 
that the base state is strongly globally stable for all values of the flow parameter 
R for which v,,(t) < 0. This follows directly from (2.12). The main emphasis in this 
paper, however, is on flow parameters R and base states for which v,, cannot be 
shown to be negative. Indeed, from the definition (2.11)) v,,(t) will be negative 
only for sufficiently small values of R, which yields the global stability limit for 
the flow. Conversely, it is clear that, for sufficiently large R, vA(t)  can be made to 
become positive. We now address ourselves to a discussion of the behaviour of the 
function v,,(t). In  the following, we assume that the flow may become unstable, 
i.e. R > p”(00). 

THEOREM 2. Let the hypothesis of theorem I hold, and let to be a zero of v,,(t). 
Then (for any fixed A ) ,  to 2 t”. 

THEOREM 3. Let the hypothesis of theorem I hold; then for any fixed A ,  
v,,(t) < 0 for all 0 < t < to. 

These theorems are particularly useful in that they serve to establish that 
v,, is initially negative and that, if it  becomes positive (i.e. the flow is not globally 
stable), its first zero is bounded from below by the quantity t ” .  

These results are depicted in figure I, where we show the probable behaviour 
of v,,(t). The location of the curves depends upon the value of the flow parameter 
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R. For R belowp”(co), the flow is strongly globally stable, i.e. vh(t) is always nega- 
tive. For R sufficiently large, vh(t) will become positive for t 2 to t*. We have 
not been able t o  prove that vh is monotonic as depicted, but it will be shown to be 
computationally true for the problem driven by surface tension treated in $3. 

The proofs of theorems 2 and 3 rely on use of the definition oft*, and its relation 
to the flow parameter R. Recall that t* is defined implicitly through the relation 
(2.4), which we write as 

1 1 
(2.13) 

for any given flow parameter R. Now any zero of vA(t) must evidently satisfy 

But from (2.13) we have 

(2.14) 

(2.15 a )  

(2.15 b)  

The proof of theorem 2 follows from (2.15b). Recall that by hypothesis IA/B is 
bounded from above by a quantity (pnl)  which increases monotonically with 
time. Thus any zero of 1~~ must occur for to 2 t* ,  since t* is the earliest time for 
which (2.15b) can hold. 

The proof of theorem 3 follows directly from (2.15a).  Since 9 / E  is positive 
definite, the sign of is determined by the sign of the term square brackets in 
(2.15a). Now if to is the first zero of vh, then I A / 9  is bounded above by its value at  
to, and hence l j h  < 0 for all t < to. 

We now state the main result of this section. 

THEOREM 4. Let vh(t) be a monotone increasing function of t  with vh(t) initially 
negative with a t  most an integrable singularity a t  t = 0. Then there exists a 
unique time t = t i  > 0 such that E(t)  < E(0)  for 0 < t < t i .  

Integration of (2.12) yields 

(2.16) 

and the proof follows directly. The quantity tt is evidently determined implicitly 
from the condition 1; lln(t) at = 0. (2.17) 

For any given R, we denote the solution to this problem as t+ ( A ,  R). The deter- 
mination of that (constant) value of h which maximizes t+(A; R) yields the opti- 
mal bound on the onset time, viz. 

to, 2 P(R) = maxt+(h, R). 
h>O 
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FIUURE 2. The stability plot in the R, t plane. ---, locus of 
the functionP(t); -, Z+(R). 

The interpretation of theorems 1 and 4 is best displayed in the R, t plane; see 
figure 2. The dashed curve denotes the locus of the solutions to (2.9). By theorem 
1,  we have strong stability everywhere t o  the left of the curve. The intersection 
of the curve and the horizontal line R = constant gives the lower bound t* for the 
onset time. Also shown is the locus of points Z+(R); in the region between the 
curves we have E( t )  < E(0) .  Note that theorem 2 ,  together with the hypothesis 
of theorem 4, ensures that the curves have this relation to one another. 

To the right of the upper curve, one can bound the energy by integrating 
(2.13) beyond t+. Such results would be of dubious value, however, since the 
amplification factor corresponding to the manifestation of the instability is 
unknown. In  closing we note that the hypothesis of (at most) integrable singu- 
larities in p,,(t) and i l A ( t )  may be removed by integration of the respective in- 
equalities over a time interval bounded away from zero (Davis 1972). 

3. Flows driven by surface tension 
Formidation 

We propose modelling evaporating liquids subject to instabilities driven by sur- 
face tension. If surface effects are to dominate buoyancy, we are restricted to 
thin liquid layers, which in most cases implies depths less than about 3mm. 
A condition of constant heat flux from the upper surface is used to model the 
evaporation. Vidal (1967) and Vidal & Acrivos (1968) have shown this to be a 



The stability of uniformly accelerated flows 199 

realistic picture by demonstrating the agreement between the measured surface 
temperature and the diffusive solution to the appropriate conduction problem. 
For the small observed changes in surface temperature (less than 1 "C) constant 
heat flux is equivalent to constant mass flux. Our lower surface condition is that 
of an isothermal (constant concentration) plate. This condition allows com- 
parison of strong stability results at  large times with those of Davis (1969), who 
solved the corresponding steady-state problem. Other boundary conditions are 
obviously possible. 

The base state we consider is a stagnant liquid layer of thickness d resting on a 
horizontal and isothermal plate. The upper surface of the liquid layer is free. 
At time zero, the layer is impulsively cooled by a constant outwardly directed 
heat flux Q (the product of the latent heat of vaporization and the mass flux of 
evaporation). Carslaw & Jaeger (1959, p. 113) give the solution for the dimen- 
sionless penetrative profile 

where To is the initial (dimensionless) temperature of the fluid layer. We have 
used the scalings 

Cp, t ,  T )  = {d ,  @ / K ,  Qd/k) .  (3.2) 

K and k are the thermal diffusivity and conductivity of the liquid, respectively. 
For the disturbances, let the scalings be 

{r, t ,  U , p ,  @} = {d ,  K/d, Kp/d2, Qd/k}.  (3 .3 )  

p and v = p/p are the liquid density and kinematic viscosity, respectively, 
and u = (u, v, w). The disturbances then satisfy the dimensionless nonlinear 
equations 

+ ( a q a t  + u . VU) = - vp + V ~ U ,  ( 3 . 4 a )  

a q a t  + u . vo + waT/az = vw, (3 .4b )  

0.u = 0, 
with boundary conditions 

(3 .4c )  

(3 .5a ,  b )  

w = 0, ( 3 . 5 c )  

a q a z  = LO ( 3 . 5 4  

atz  = l and  u = o ,  o = o  ( 3 . 5 e , f  1 
a t  z = 0. We have defined the following familiar dimensionless groups: the 
Prandtl number B = V / K ,  the Marangoni number M a  = ( - Qd2/phc) ay/aT and 
the Biot number L = Qd/k .  ay/aT is the (constant) variation of surface tension 
with temperature. Equations (3 .5a ,  b )  express the balance of surface-tension 
forces due to temperature variation, and viscous stress in the adjacent liquid. 
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Equation (3 .56)  states that the interface is not allowed to deform. This approxi- 
mation is made here for simplicity in analysis, and it is justified for fluids of 
suEiciently high surface tension and density (relative to the adjacent upper 
phase); cf. Zeren & Reynolds (1972) .  In  particular, in a linear stability analysis 
Smith (1 966) explicitly demonstrated that deformation does not appreciably 
alter the theoretical results for most liquids. In ( 2 . 5 4 ,  the Biot number L at the 
free interface will henceforth be set equal to zero to simulate the conditions 
already discussed. 

As in I and 11, we now use (3 .4 )  and (3 .5)  to derive the energy identity (2.1).  
Taking the scalar product of u with ( 3 . 4 a ) ,  multiplying (3 .46 )  by 0 and inte- 
grating over the layer, we have (see Davis (1969) for notation) 

( 3 . 6 a )  

ga (Oz)/at = - (OwaT/az)- (IVOl”. (3.66) 

2 0 is We define a disturbance modulus E = + ( l ~ 1 ~ a - ~ + h 0 ~ ) ,  which for 
positive definite. E satisfies the energy equality 

It is enlightening to survey (3 .7 )  in order to understand the dynamics of the 
instability. The first two terms, representing dissipation and conduction, are 
negative definite and so act to decrease the dist,urbance norm. The third term is 
the input of surface energy to the disturbance: it must be positive if there is to be 
an unstable disturbance. This is easily seen since M a  is typically positive (since 
ay/aT < 0) and for upwelling fluid at z = 1, aw/az < 0 and 0 < 0. Similarly, for 
downwelling fluid at z = 1, awl& > 0 and O < 0. Using similar reasoning we can 
deduce that the last term in (2.9) is an energy input since for upwelling fluid 
0, w > 0, and for downwelling fluid 0, w < 0. We note that aT/az < 0 in either 
case. 

Equation (3 .7 )  may be cast into a symmetric form using the rescaling 4 = Oh4 
and 7 = h / M a .  Thus, 

dE/d t  = -53 + Ma*I,(t), ( 3 . 8 a )  

where 93 = (Vu: vu + pq5p) (3 .8b)  

and (3.86) 

We thus arrive a t  a form compatible with our general discussion in $ 2 .  Corn- 
putationally however, it was found to be more convenient to work with the Euler- 
Lagrange equations in their asymmetric form, which results from the scaling 
Q = Oh: with h retained as the coupling parameter. The two forms are obviously 
equivalent, so that all of the results of $ 2  hold. 
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FIGURE 3. The stability curve for convection driven by surface tension. -, strong stability 
limit ; 0, Vidal's experiments; A ,  3 mm deep propyl alcohol; B, 1 mm deep methyl alcohol; 
C ,  1 mm deep acetone. 

Xtrong stability 
The strong stability limits are solutions to the mini-max problem 

p"(t) = max min (D/IA( t ) ) ,  (3.9) 
A > O  h 

h={u ,$ [V.u=  0, w =  0 a t  x =  1, u =  O = O  at z =  0). 

It is convenient to determine the pA(t) as eigenvalues of the Euler-Lagrange 
equations corresponding to (3.9). These can be shown to reduce to 

(3.10a) A+ aT 
2 a ~  

V4W---V~$ = 0, 

A+ aT 
v2$-Tzw = 0, (3.10 b)  

with the natural boundary conditions 

p: awl& + 2h+ a$/ax = 0, 

p l  v; + - 2 ~ 4  azWlaZ2 = o 
(3.11 a )  

(3.11b) 

a t  z = 1 together with w = 0 at z = 1 and w = awl& = $ = 0 at z = 0. 
We note that (3.11) bear a close relation to the dynamic conditions (3.50, b) ,  
but not the thermal condition (3 .54 .  
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Since (3.10) and (3.11) are cyclic in the directions normal to the z co-ordinate, 
we can Fourier decompose (w,#) into modes characterized by a single wave- 
number a. We then seek p"(t) = max minp,(t). The stability-region boundary is 

given by Ma(t) = p""t). The solution for ph(t) was accomplished using an adapta- 
tion of a Galerkin technique due to Nield (1964). The development is traced in the 
appendix. The resulting generalized algebraic eigenvalue problem was solved 
using a method due to Moler & Stewart (1973). 

The results of this study are presented in figure 3. The remarkable result is that 
the energy theory yields bounds on the onset time. An experimental trajectory 
is horizontal on figure 3. Hence there is stability until that time at which the 
stability boundary is crossed. That time of crossing is a lower bound on the experi- 
mentally observed onset time. More important, the results also indicate that the 
analysis of $ 2  may apply to a wide class of accelerated flows. 

At large times the strong stability limit of our work must agree with the 
steady-state results of Davis (1969). Our limit of M a  = 55.75 compares well with 
his result of 56.77 (in the limit of zero Rayleigh number). Our results ere thus 
believed to be accurate to within 2 yo. 

h a  

Marginal stability 

The Euler-Lagrange equations corresponding to (2.11) may be manipulated to 
yield 

( 3 . 1 2 ~ )  

- v,,(t) # + 2V2# - hg(dT/dz)  w = 0 (3.12 b )  

and natural boundary conditions 

2hJi a#/& +Ma awlaz = 0, 

MaVf# - 2ht a 2 W p  = 0 

(3.13a) 

(3.13b) 

at z = I ,  in addition tow = 0 at z = 1 and w = awl& = # = 0 at z = 0. 
We note that, as in 11, the introduction of a weaker criterion for stability 

reintroduces the Prandtl number u as a parameter of the problem. 
The computation of the marginal stability boundary is involved, so we detail 

the steps here. As in the strong stability formulation (w,#) may be a Fourier 
decomposed by introducing a wavenumber a. For any given a, Ma ,  h and u, 
the function v,, ( t ;  a,  M a ,  u) may be determined by the solution of a generalized 
eigenvalue problem; see appendix. Referring to (2.14), the problem is then to 
find the value of tt(h; Ma ,  a,  r ~ )  for which 

J-;v,(s)ds = 0 (3.14) 

for the most dangerous Fourier mode, i.e. we seek min tt(h; Ma,  a,  a). We em- 

phasize that this most dangerous Fourier mode may have no relation to the 
so-called ' wavenumber of maximum growth rate ' of linear amplification theory, 
since the maximizing (w, 4) need not be a solution to the dynamic equations. 

U 
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FIGURE 4. The net amplification as a function of 01 and t .  

t* z+ te,, 

M a  = 421, u = 1 0.01 0.02 - 
Ma = 618, g = 30 0-006 0.0 12 0.08 

Ma = 2023, CT = 6.6 0.001 0.003 0.7 
(propanol) 

(methanol) 

TABLE 1. A comparison of stability bounds and experimental onset times 

The ‘optimal’ lower bound on the onset time is found by suitably varying A, 
viz , 

P = max min tt(A; Ma, a, a). 
, a  

Since (3.14) involves the unknown tt, it was necessary to adopt the following 
iterative procedure. For fixed ( X u ,  a),  the ‘amplification’ 

was determined as a function of a and t. Three-point Gaussian quadrature over 
(0, t )  was found to be sufficiently accurate. The main features of the results are 
depicted schematically in figure 4. The results for t near tt clearly indicate a 
most dangerous Fourier mode. The value of tt is that for which 5, first becomes 
zero for any a. The process was then repeated for different h to determine it. 

Because of the large number of computations necessary to determine the 
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marginal stability curve, we have computed f t  for a limited number of cases only. 
These are given in table 1. The first point (Mu = 421, (r = 1 )  was chosen as 
representative of the improvement for moderate Marangoni numbers. The other 
two cases are for parameter values corresponding to the available experimental 
results of Vidal. It is seen that f t  2 t*, as must be the case, and furthermore, 
assuming these comparisons to be typical, one can obtain large improvements 
in the bounds with the marginal stability criterion in situations where its use is 
appropriate. 

4. Discussion and conclusions 
The stability curve is presented in figure 3. This curve should asymptotically 

approach Davis’ (1969) strong stability limit. This was verified in the current 
work. It is interesting to note that the frozen-time results of Vidal & Acrivos 
(1968) (not shown) nearly overlay the strong stability limits presented here. 

A number of experimental points are shown in figure 3 and in table 1. These 
results are from Vidal (1967) and Vidal & Acrivos (1968) and are selected so that 
the buoyancy effect is minimal. The abscissae of these points are only approxi- 
mate: in Vidal & Acrivos (1968) the onset time for 3mm deep propyl alcohol is 
stated to be 8 1 s. The onset times for methyl alcohol and acetone (1  mm deep 
pools) are from Vidal (1967). They are not explicitly reported in that work, so 
we equated them to that time a t  which the surface temperature deviates from 
the predictions of the conductive solution. 

The results of the experiments are seen to be in agreement with the theory in 
the sense that none of the experimentally determined onset times lies to the left 
of the strong stability limit. The comparisons made in table 1 also indicate that 
the marginal stability criterion provides bounds for the onset time in this context. 
If this improvement in the bound is typical, this weaker definition of ‘stability ’ 
may indeed find some utility. Owing to the lack of good experimental data, those 
conclusions must necessarily remain tentative. It can be said, however, that  the 
energy method can be successfully applied to uniformly accelerated flows to yield 
lower bounds on that elusive quantity the ‘onset time’. 

We wish to acknowledge helpful discussions with Fred Schwarz. Computing 
was supported by the School of Engineering, Stanford University. 

Appendix. Expansion technique for the impulsive cooling problem 

Nield’s (1 964) Fourier sine-series method. 
I n  this appendix we present the solution method, which is an adaptation of 

Strong stubility 
The Euler-Lagrange equations are first Fourier decomposed in the directions 
normal to the z axis. This introduces the wavenumber a:  
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where D = alaz. The boundary conditions become 

i (p?/ZA$) Dw + D$ = 0 
(p2,/2A+) $4 + D2w = 0 at z = 1,  

w = o  

w = D w = $ = O  at z = O .  

We want to expand both $ and w in a sine series. However, if we differentiate 
term by term, the expansion will not approximate the odd derivatives of the 
function unless the preceding derivative vanishes at the end points z = 0, 1.  
See Jeffreys & Jeffreys (1946, 514.062). For the derivatives of interest here, if 
the expansions are to be valid approximations then the following conditions 
must be satisfied: 

~ ( 0 )  = ~ ( 1 )  = $(O) = $(I) = D'W(1) = O2w(O) = 0. ( A  3) 

The first three conditions are satisfied but the last three are not. 

liary functions $* and w* satisfying the conditions (A 3): 
Consequently, to use a sine expansion it is necessary to introduce two auxil- 

m 
$* = $ - $( 1) z = 2 $n sin nm, 

n = l  

w* = w + p l ( z )  D2w(0) -p2 ( z )  D2w( 1) = C wn sin nm, ( A 4 b )  
n=l 

where 

Rearranging (A 4) gives 

P1(X) = % ( X 3  - 3 Z 2  + 22) ,  p 2 ( ~ )  = 6(z3 - 2). ( A  4% d )  

( A  5a)  

w = - ~ 1 ( z ) D 2 w ( 0 ) + p 2 ( z ) D 2 ~ ( l )  = 3 wnsinn7rz. ( A 5 b )  

m 

n=l 
q5 = $ ( l ) z +  2 $,sinnm, 

m 

n=1 

The Galerkin expansion now proceeds by substituting the above expansions 
into ( A  1) and the boundary conditions, and making the residuals orthogonal to 
each of the expansion functions sinmslrz. (Note that this is equivalent to Nield's 
approach of first expanding z ,  p 2 ( z )  and pl(z)  in their sine series.) 

Using the definition 

{u, v) = 2s,'uvdx (A 6) 

we generate the following algebraic set for the w,, $,, etc. : 

[(mn)2 + a212 w, + 2a2[ - (1 - z ,  sinmm) D2w(O) - ( z ,  sin mm) D2w( I)] 
+ a4(p2, sin mnz) D2w( I )  - a4(p1, sinmnz) D2w(0) 

sinmlrz sinmm)] = 0, (A7a) 
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- [(mn)2 + $1 q5m - $(z, sin mnz) $( 1) - QA4 ( p 2 ( z )  a T p ,  sin mnrz) D2w( 1) 
+ &h4{pl(z) aT/az, sinmnz)D2w(0) 

The three boundary conditions not identically satisfied yield 

2(nn)~,+D~w(1)Dp~(O)-0~w(0)Dp~(O) = 0, ( A  7 4  
n 

Z ( n n ) ( - l ) n 4 n + $ ( l )  
n 

- - -- '' [C ( -  l)n(nn)~,+02w(l)0p2(l)-02w(0)0p1(1)], ( A 7 4  
2h4 n 

D2w( I )  = - (p32h4)  ."( 1). ( A  7 4  
With h given, (A7)  pose a generalized algebraic eigenvalue problem for p A .  

If the order of the Galerkin expansion is N ,  then the problem takes the form 

AX = PABx, 

where A and B are square matrices of order 2N + 3,  B is singular and has rank 2, 
and xis the column vector x = [w, w2, . . . , wx, y51, q52, . . . , q5N, D2w( I), 02w(O), $( I)]T. 
This problem is most conveniently solved by the method of Moler & Stewart 
(1973) .  

Marginal stability 
Equations (3.12a, b )  and (3.13a, b)  are Fourier decomposed to give, respectively, 

2 ( 0 2 -  .2) 4 -A: aT/az w = $, ( A  8b)  

2hS a$/& +Ma = 0, ( A  9a) 

Maa2$ + 2hS a2w/az2 = 0. (A9b) 
The expansions in (A5) are also used for this formulation. Substitution and 
orthogonalization result in the following relations. Equation (A 8 a )  becomes 

[(mn)2+&]2wm- 2a2(D2w(0) (1 -z,sinmnz) +D2w(l) ( z ,  sinmnz)) 
+D2w(l)a4(p2, sinmnz)-D2w(0)a4~1,sinmnz) 

= (vA(t)/2u) [ - ((mn)2 + ~ 2 )  wm + D2w( 1) ((2, sin mnz) - a2 (p2, sin mnz)) 
+D2w(0) (((I - z ) ,  sinmnz)+a2(pl, sinmnz)). 

Equation ( A  8 b )  results in 

) - 2[(mn)2 + a21 cjr,t - 2a2$( I ) ( z ,  sin mnz) - A* c wn (g sin nnz, sin mnz 
n 

- h*D2w( 1)  b2 aT/az, sinmnz) + A t  D2w(0) bl aT/az,  sinmnz) 

= vA@) [$, + $( 1)  ( z ,  sin rnnz)]. 
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The conditions Dw(0) = 0, ( A 9 a )  and (A 9 b )  becomes respectively 

S(nn)ZLI,--02w(l)--DW(O) = 0 
n 
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The eigenvalue vA(t)  in these equations is found in the same way as pA(t) in the 
strong stability formulation. 

The inner products in the equations in this appendix were all obtained 
analytically. 

The strong stability results, as mentioned in $ 3  above, are believed to be 
accurate to within 2 yo. It was necessary to carry the Galerkin expansion to 30 
terms to achieve this accuracy. The solution for the base state temperature field, 
equation (3.1)) was carried to as many terms as were necessary to achieve a 
term-to-term variation of less than 0.1 yo in aT/& throughout the layer. 
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